Coronavirus COVID-19. Current state and last updates.

Coronavirus COVID-19. Current state and last updates.

05-Dec-2023                World              Russia    Europe    Asia    North America    South America    Africa    Oceania          
CountryActive cases1 Week2 Week4 WeekPopulation
Total/1m popStart fromSpeedNew casesRecoveredDiedTotalStart fromSpeedNew casesRecoveredDiedTotalStart fromSpeedNew casesRecoveredDiedTotal
1Lesotho 8,0873,754.418,0870.0%00008,0870.0%00008,0870.0%00002.154
2Algeria 82,0551,848.1782,0350.0%20002082,0160.0%39003982,0030.0%52005244.398
3Uganda 67,9201,453.3967,9200.0%000067,9200.0%000067,8080.0%1120011246.732
4South Africa 61,3621,025.6661,3620.0%000061,3620.0%000061,3620.0%000059.827
5Seychelles 85858.592726.0%109510581517.1%12151070158.2%121510700.099
6Somalia 12,791789.6712,7910.0%000012,7910.0%000012,7910.0%000016.198
7Mauritius 696546.746960.0%00006960.0%00006960.0%00001.273
8Cabo Verde 305544.643050.0%00003050.0%00002990.1%70160.560
9Eswatini 623533.395840.9%3900395840.5%3900395510.4%7200721.168
10Egypt 49,228474.8649,2280.0%000049,2280.0%000049,2280.0%0000103.668
11Namibia 969376.609500.3%2102199330.3%3802369240.2%4702452.573
12Guinea-Bissau 508254.005080.0%00005080.0%00005080.0%00002.000
13Sao Tome and Principe 51229.732816.0%5128023230.5%813204900.0%85340510.222
14Botswana 547229.455140.9%3300335100.5%3700374710.5%7600762.384
15Zambia 3,913208.833,9090.0%40043,9020.0%1100113,9020.0%11001118.738
16Congo 983175.169830.0%00009830.0%00009830.0%00005.612
17Chad 2,633157.192,6330.0%00002,6330.0%00002,6330.0%000016.750
18DRC 13,269145.1313,2660.0%300313,2240.0%45004513,2240.0%45004591.431
19Equatorial Guinea 13996.861390.0%00001390.0%00001390.0%00001.435
20Burundi 1,11491.811,1140.0%00001,1140.0%00007591.4%3550035512.134
21Zimbabwe 1,31287.391,2770.4%3702351,2370.4%7904751,2130.3%106079915.013
22Mozambique 2,62182.272,6080.1%1300132,6000.1%2201212,6000.0%22012131.858
23Djibouti 7474.15740.0%0000740.0%0000740.0%00000.998
24Mauritania 30965.273060.1%30033060.1%30033060.0%30034.734
25Ethiopia 5,34245.695,3350.0%70075,3150.0%2700275,3150.0%270027116.925
26South Sudan 34230.312783.0%6400641158.1%227002271154.0%2270022711.285
27Niger 72929.397290.0%00007290.0%00007290.0%000024.807
28Gabon 6528.74650.0%00001113.5%540054116.6%5400542.262
29Gambia 6526.39650.0%0000650.0%0000650.0%00002.463
30Guinea 34425.713430.0%10013380.1%60063380.1%600613.378
31Kenya 1,13220.741,1320.0%00001,1320.0%00001,0720.2%60006054.588
32Nigeria 4,05519.344,0450.0%1000104,0380.0%1700174,0380.0%170017209.659
33Angola 64719.276460.0%10016230.3%2400246210.1%26002633.568
34CAR 5511.25550.0%0000550.0%0000550.0%00004.888
35Comoros 910.2090.0%000090.0%000090.0%00000.882
36Burkina Faso 994.65803.4%210219643.3%370235641.6%37023521.298
37Mali 874.21870.0%0000870.0%0000840.1%300320.652
38Madagascar 983.48940.6%4004712.4%280127671.4%32013128.181
39Togo 252.97250.0%0000250.0%0000181.2%70078.412
40Liberia 122.33120.0%0000120.0%0000120.0%00005.140
41Benin 262.11260.0%0000260.0%0000260.0%000012.342
42Senegal 301.76271.5%3003270.8%3003270.4%300317.048
43Rwanda 110.84110.0%0000110.0%0000110.0%000013.173
44Ivory Coast 220.82620.4%16001669.7%16001664.7%16001626.828
45Cameroon 150.56150.0%0000710.4%21130875.1%21130827.001
46Libya 20.2920.0%000020.0%000020.0%00006.936
47Morocco 00.0000.0%1040010400.0%404004044,8940.3%404-1,256,15101,256,55537.214
48Tunisia 00.0000.0%000000.0%000000.0%000011.904
49Réunion 00.0067,0951.6%8,007-418,5720426,57967,0950.8%8,007-418,5720426,57967,0950.4%8,007-418,5720426,5790.900
50Ghana 00.0000.0%000000.0%92920000.0%92920031.521
51Eritrea 00.0000.0%000000.0%000000.0%00003.580
52Sierra Leone 00.0000.0%000000.0%000000.0%00008.089
53Tanzania 00.0000.0%200200.0%900900.0%900960.904
54Western Sahara 00.0000.0%000000.0%000000.0%00000.607
55Malawi 00.0000.0%35003500.0%103001036490.5%103-85,651085,75419.470
56Mayotte 00.0000.0%000000.0%000000.0%00000.277
57Sudan 00.0000.0%000000.0%000000.0%000044.555
*** He recovered + died more became ill     Average daily infection rate of more than > 10%.    
* This is the current state. There are no data about 80,000 people falling ill in China in February.
** Speed ​​is the ratio of new illnesses (per week) to the number of days and to the number of sick (a week ago), which supposedly infected them.
The data source https://www.worldometers.info/coronavirus/